News

  • 0
  • 0

New ways of extracting lithium from water could increase supply and efficiency, the importance of the pva fiber price

New ways of extracting lithium from water could increase supply and efficiency, the importance of the pva fiber price

Anyone using a cell phone, laptop or electric car can\'t live without lithium. This element is in great demand. While lithium is in abundant supply around the world, obtaining and extracting it remains a challenging and inefficient process.

An interdisciplinary team of engineers and scientists is developing a way to extract lithium from contaminated water. A new study published this week in the Proceedings of the National Academies of Sciences could simplify the process of extracting lithium from saltwater, potentially creating a larger supply, and reduce the cost of lithium in the batteries that power electric cars, electronics and a variety of other devices. Currently, the pva fiber price most common source of lithium in South America is obtained from saltwater using solar evaporation, an expensive process that can take years and lose most of the lithium in the process. The team at the University of Texas at Austin and the University of California, Santa Barbara, designed a thin film to precisely separate lithium ions from other ions, such as sodium, significantly improving the efficiency of collecting the pva fiber price coveted element.

"Addressing the major findings has significant implications for lithium resource constraints and may also be extracting it from water to generate oil and gas for battery production," said Benny Freeman, professor of Chemical Engineering at THE University of Texas at Austin and co-author of the study. In addition to saltwater, wastewater from oil and gas production also contains lithium, but it remains untapped. Researchers say pva fiber price just one week of fracking water in Texas\'s Eagle Ford shale could produce enough lithium for 300 electric car batteries or 1.7 million smartphones. This example shows the huge opportunity of this new technology, which could greatly increase the supply of lithium and reduce the cost of devices that rely on it.

At the heart of the discovery is a new kind of polymer membrane that researchers have created with crown ethers, ligands with specific chemical functions that bind specific ions. Crown ethers have not previously been used or studied pva fiber price as a component of water treatment membranes, but they can target a specific molecule in water -- a key component of lithium extraction. In most polymers, sodium moves through the membrane faster than lithium. In these new materials, however, pva fiber price lithium spreads faster than sodium, a common contaminant in lithium-containing brines. Using computer modeling, the team discovered why this was happening. Sodium ions bind to crown ethers, slowing them down, while lithium ions remain unbound, allowing them to move faster through the polymer.

New materials for a sustainable future you should know about the pva fiber price.

Historically, knowledge and the production of new materials pva fiber price have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.

About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the pva fiber price raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The pva fiber price materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.

The pva fiber price industry has a strong research environment in electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.

About TRUNNANO- Advanced new materials Nanomaterials pva fiber price supplier

Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of

nanotechnology development and applications. Including high purity pva fiber price, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:

Amorphous Boron Powder

Nano Silicon Powder

High Purity Graphite Powder

Boron Nitride

Boron Carbide

Titanium Boride

Silicon Boride

Aluminum Boride

NiTi Powder

Ti6Al4V Powder

Molybdenum Disulfide

Zin Sulfide

Fe3O4 Powder

Mn2O3 Powder

MnO2 Powder

Spherical Al2O3 Powder

Spherical Quartz Powder

Titanium Carbide

Chromium Carbide

Tantalum Carbide

Molybdenum Carbide

Aluminum Nitride

Silicon Nitride

Titanium Nitride

Molybdenum Silicide

Titanium Silicide

Zirconium Silicide

and so on.

For more information about TRUNNANO or looking for high purity new materials pva fiber price, please visit the company website: nanotrun.com.

Or send an email to us: sales1@nanotrun.com 

Inquiry us

Our Latest News

How can Nano Silica change the properties of coatings

Nano silica has lots of buildings that traditional products do not have. The particle size circulation of nano silica is very slim, most of which are within 100 nm, with lots of micropores and large certain surface. There are not only a large number…

What is alumina used for

Alumina homesHeat resistance: alumina can be utilized in oxidation as well as reduction atmospheres approximately 1650°& deg; C( 2900 & deg; F )and in vacuum environments up to 2000°& deg; C(3600 ° F). Use resistance: alumina is a very to…

What are the advantages of gallium nitride

What is gallium nitride?Gallium nitride is a type of binary III/V straight band void semiconductor, which is really ideal for high power transistors which can operate at high temperature. Given that the 1990s, it has actually been commonly made use o…